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OPTIMAL QUANTIZATION AND FUSION IN MULTI-SENSOR SYSTEMS FOR

THE DETECTION OF WEAK SIGNALS IN DEPENDENT NOISE
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Department of Electrical Engineering
and Systems Research Center
University of Maryland
College Park, MD 20742

ABSTRACT

Two problems of memoryless quantization and data fusion for the detection of a weak
signal in stationary dependent noise are addressed: (i) fusion from sensors with mutually
independent observations across sensors but dependent across time and (ii) fusion from sensors
with correlated observations across time and sensors. For each problem, we consider four dis-
tinct schemes (a) fusing the test statistics formed by the sensors without previous quantization,
(b) quantizing suboptimally each observation and then fusing, (c) quantizing optimally each
observation and then fusing, and (d) quantizing optimally each test statistic of the sensors and
then fusing The observation sequence of each sensor consists of a common weak signal dis-
turbed by an additive stationary m -dependent, ¢-mixing or p-mixing noise process. To guaran-
tee high-quality performance, a common large sample size is employed by each sensor. Design
criteria are developed from the Neyman-Pearson test in the fusion center for the optimal
memoryless sensor test statistics and the sensor quantizer parameters (quantization levels and
breakpoints); these design criteria are shown to involve an extension of the asymptotic relative
efficiency used in single-sensor detection and quantization. Numerical results in support of the
analysis are given for the case of dependent p-mixing Cauchy noise.

This research was supported in part by the Office of Naval Research under contract N0O0014-89-J-1375 and in part by the
Systems Research Center at the University of Maryland, College Park, through the National Science Foundation's Engineering
Research Centers Program: NSF CDR 8803012.






I. INTRODUCTION

Data fusion with multiple sensors has attracted considerable attention in recent years (see
[1}-[3]), for reason of cost, survivability, and communication bandwidth among sensors and the
fusion center. Most of the existing results for data fusion are based on the assumption that the
observation sequences of the sensors are independent across time and/or sensors and that each
sensor employs the scheme of a hard-limiter type (threshold test) for its one-bit decision. In
{4], the fusion scheme with a two-bit fuzzy decision of each sensor is addressed for the case of
a single observation with dependence across sensors. As we know, in practice the observations
tend to be dependent across time, when the sampling rates increase, and across sensors, if the
sensors are closely distributed geographically. As mentioned in (4], the fusion scheme with one-
bit decisions of the sensors is too conservative and entails considerable information. We consider
optimal quantization fusion in order to utilize fully the channel capacities between sensors and
the fusion center.

In this paper we contribute to the data fusion for dependent observations across time and
sensors. Specifically, each observation consists of the weak signal with a common nonrandom
value in additive noise with a stationary univariate density and second-order joint densities. In
addition, we compare the unquantized transmission and different schemes of quantization for
the transmission from each sensor to the fusion center. Two problems are addressed here: in
the first problem, the noise processes of the individual sensors are mutually independent; in the
second problem, the noise processes of the different sensors are correlated.

The model of dependence used here is one of the mixing sequences, the m-dependent, the
¢-mixing, or the p-mixing sequences. In general, for dependent noise across time and/or sensors,

the optimal sensor-fusion rule involves high-order (larger than two) densities of the noise that



are difficult to characterize, which increases the complexity of the detection process. In this
work, we adopt the suboptimal scheme based on the memoryless nonlinearities (or functions
of the observations). The scheme of optimal memoryless nonlinearities has been useful in the
single-sensor detection of a weak signal in dependent noise (see [5]-[7]) and has led to the optimal
quantizers in single-sensor detection, if we consider the quantizers as particular nonlinearities
(see [8] and [9]). The criterion for optimal nonlinearity or quantizer for each sensor is derived
from the Neyman Pearson test in the fusion center.

In both problems described above, four schemes based on nonlinearities and quantizers are
considered with a common large sample size for each sensor, in order to form the test statistics
of the fusion center. Note that using a large sample size guarantees a high-quality performance
in detection of a weak signal. In the first scheme, the test statistic T, x, which consists of the
sum of n observations X i(k), (i =1,2,--+,n) passes through an appropriate nonlinearity gi(-),
ie, Tnk =Y g;,.(X,-(k) ), is formed by the k-th sensor, and transmitted directly to the fusion
center, where a likelihood ratio test is performed. In the second scheme, the observation X i(k) of
the k-th sensor at time ¢ is first quantized by a quantizer gx(-) obtained from the discrete-form
of the optimal nonlinearity gi of the first scheme and then transmitted to the fusion center,
where the test statistic T, 1 = S, gk(X,-(k) ) is formed by collecting the quantized data n times
from each sensor and a likelihood ratio test is performed on the basis of T, 4,k = 1,2,---, K.
In the third scheme, a scheme like the second one is employed, except that the quantizers are
now optimized and not related to the nonlinearities of the first scheme. In the forth scheme, the
test statistic of each sensor is first formed as in the first scheme by a nonlinear preprocessor and

then quantized before transmitting; in addition, we show that the complex optimization for the

optimal nonlinearity and quantizer can be separated in two decoupled optimization problems,



which considerably simplifies the original optimization problem.

As mentioned above, the design criterion for the optimal nonlinearity and quantizer for each
sensor is from the Neyman Pearson test in the fusion center. It turns out that the final form of
the design criterion is the deflection in that the test statistics are jointly Gaussian distributed
under a large sample size (see [10]).

The remainder of this paper is organized as follows: in Section II, the weak signal model is
described and basic assumptions are given; in Section III, the case of dependence across time
only is considered; in Section IV, the case of dependence across time and sensors is considered;
in Section V, numerical results from simulations are given to illustrate the analysis; in Section

V, the conclusions are drawn.



II. PRELIMINARIES

The problem we address is modeled as a distributed hypothesis testing in a multi-sensor

environment involving K sensors

7P . x®=nN®

H® © x® =g+ N®, i=1.. mk=1,--,K (2)

where § = C/vR — 0, as R — 00, and C is a constant. For each sensor k, {N;*),i=1,...,n}
is a stationary dependent noise sequence with a univariate density fi(-).

Let g be a nonlinear function (nonlinearity) of X,-(k) for the sensor k& and

B0 = Eo[gk(X,-(k)], e = Exfgr(XP) (3)

be the means of the nonlinearity for sensor k under Hy and Hi, respectively. Throughout this
paper, we assume that appropriate conditions are satisfied for the mixing (the m-dependent, the
¢- or the p-mixing) model of dependence, such that, under H; (¢ = 0,1), for sensor k£ and all
6 >0,

o2 o(gr) = varg[ge( XN +2 Y covglgn(X{)a(X )1 > 0 (4)
j=1

converges absolutely as m — 0o, and under the large sample size n,

%zj:l[gmk)) ~ ns(gw) (5)

is asymptotically Gaussian distributed with mean zero and variance a,%yo(gk), according to the
central limit theorem (see [11-13]). We also make the following regularity conditions, for § — 0

and under a large sample size

21 @itz — o] = [ Flan(e)felz - Olda )



tro(gx) ; fr0(gr) - a:u'g(ogk)la-__o S0 (7)

ok,0(9x) — ok,0(gk), (8)

and pgg > pir0, where the integration is over the range (—00, 00); this range is used for integra-
tions in this context, when there are no explicit indications for the ranges of integrations.
Under the above framework, conditioned on H; (¢ = 0,1) and for each sensor k, T, =
raa(X ,-(k)) is asymptotically Gaussian distributed with mean nyuy ¢(gx) and variance nog ;(gx),
for all # > 0. Furthermore, (Ty x, &k = 1,2,--..K) are multivariably Gaussian distributed.
In the following sections, we omit the argument gi of uxe(-) and o o(-) for all § > 0 for
the purpose of convenience; the m is finite for m-dependent noise and m — oo for ¢-mixing or

p-mixing noise.



III. THE CASE OF CORRELATION ACROSS TIME

In this section, we consider the case of dependence across time only, i.e., {X; (k )} ', and
{x (J)},_l are mutually independent for k # j. The four schemes mentioned in Section I are
addressed and optimal nonlinearities as well as quantizers are formulated.
II1.A. Unquantized Transmission

We first consider the scheme described in Figure 1 in which each sensor k transmits a test
statistic Tnx = Y iq g6(X i(k)) to the fusion center, where the Neyman Pearson test is used on
the basis of the transmitted data.

Let In L be the natural log-likelihood ratio function of Ty, 1,k = 1,2,-.-, K. The test of the

fusion center for the fixed level « is described as follows

P(lnL>n)=a

gk,kg}l,g,...,x Pi(ln L < n) (9)

where 7 is the threshold determined by a. Since T, 4,k = 1,2,.-., K are independent for

different sensors, the likelihood ratio function of T, k,k = 1,2, -+, K has the following form

Ta(Tok, k Je1(Tox) k6 — Hk,0 pE o~ 12 o
InL =In~— . In Thp — ————m,
Jro(Tn g, k= 1 Z Jeo(Th k) ,;[ o, 203, )

whose expectations and variance under two hypotheses are

K 2
(Kko = Hir,0

Eq[lnL} = —Ep[ln L} = nkz: —W:l (11)

=1 ’

and

(B9 — Mr0)?
Var[lnL}=n ———— 12
[ Z: o, (12)

As mentjoned in Section II, T, . for each k is Gaussian distributed under either hypothesis

and the large sample size n. Therefore, from the form of (10), In L is Gaussian distributed under

6



either hypothesis and a large sample size, and

Po(lnL>n)=P0(lnL—Eo[lnL] n—Eo[lnL])__e [n——Eo[lnL]}za (13)

\/Varlln Ll \/Var[ln Ll B \/Var|ln L|

where er fe(-) is the complement error function,

= /Var[ln Ller fc=*(a) + Eofln L] (14)

and

InL — Ey[InL],  n— E[lnI]

\/Var|ln Ll )< \/VarllnLl)

EyInL) -7 Ei[ln L} — Eg[ln L)

= erfc [m] =erfc [—\/-V—a—;r_m]— - erfc'l(a)}
= erfc [(ni w) erfc‘l(a)jl . (15)

P(lnL <7n)= P

With this form of miss probability, the minimization problem (9) is characterized by

(E] [ln L] - Eo[ln L])2

gk k=12, K Var[ln L}
= n- max Z M.Q)__ (16)
9k vk 1,2, 1K Gk 0

for fixed o, where (E;[In L] — Eo[ln L])?/Var[ln L] is the deflection. Then under the regularity

condition (7),

Z(Mke uko) k’% —Sg,,- (17)

ak 0 k=1

Since @ is a constant and the observations are independent across sensors, the optimization

of (17) with respect to gi, for k = 1,2,.-., K can be conducted separately, i.e.,

! 2
ax (#kz,o) (18)
9k Uk,O

for k = 1,2,---, K. This minimization problem has been solved for m-dependent noise in [5]

and for ¢-mixing noise in [6] (see also [14]). Here we only give the final form of the integral

7



equation, which determines the nonlinearity gi(-), for k =1,2-.., K, as follows
- f'e(2)/ fiu(z) - /Kk(w,y)gk(?/)dy = g(z), k=1,2,-.-, K (19)
where f}(-) is the derivative of fi(-), and

Ki(e,5) =230 £, (0l0) - @+ DA (20)
i=1

is the kernel of integration with the conditional density f](vlj, )+1 /Nl(ylm).
I11.B. Directly Quantized Transmission

Under the scheme of IIL. A, each sensor has to transmit T, x = 3 1y gk(X,-(k))) (k=1,2,.--,K),
a real number, to the fusion center, which is inpractical from a bandwidth point of view. The
easiest way to modify the structure of III.A is to approximate the the integral equation (19),
which is satisfied by the optimal gx(-), with its counterpart of a discrete-form and let each sen-
sor transmit the finite-dimensional nonlinearity gx(X ,-(k)) (i=1,2,-..,n) of the discrete-form of

optimal gi(-). Then the test statistic
= n (k
Tk = 9z ) (21)
=1

for each sensor is formed in the fusion center. In fact, this modified structure turns the nonlin-
earity of sensor k£ to a quantizer and g stands for the breakpoints and the quantization levels
(discrete-function values of g, at breakpoints).

In order to approximate the integral equation (19) by its discrete-form, we set the interval of
integration to be (X,(,ﬁ)n, X,Sflx) (chosen according to the main coverage of the noise density) for
each sensor k and write the discrete-form of an M-level quantizer for each sensor k as follows

M
= f' @) fu(a8) = 3 Kk, o)gi(a)Aal) = gr(2(F)) (22)

=0



where wﬁf),i =0,1,2,.--, M (a;gk) X(k) 28 = X,(,ﬁzm) are the breakpoints of the quantizer

mn? SM -

and Ax_(, ) is the approximation of dz; for sensor k, (for example Am( ) = (X(k) - x%® )/ M).

min

Define the vectors

o= [gk(zs';))gk(mﬁfh,---,gk(mg’;;)] | (23
= [ 7 @), 8] (24)
and the matrix
G =[] (25)
where
G = fi(e®)Ki(z P, (k>)Ax<k>+a(t - ;)] (26)

Then the algebra equation (22) can be written as

fF = G giT (27)

for each sensor k (k = 1,2,..-,K). To solve (27) for gy, we assume that for each k, w(k)

(¢=0,1,---, M) are chosen such that the matrix Gy is nonsingular. Thus we have
5 ~1
o’ =G T » (28)

for k = 1,2,..-, K. From the discrete-form gk(a:(k)) (1=0,1,---, M) we can characterize the

quantizer for sensor k and any observation z as

(
ax(e) if & < ot¥)
3(@) = (o) + B2 if o€ (2,2, (29)
gk(a:sM . ifz > :vg’f&_l

fori=1,2,-,M —2.



In other words, each sensor k transmits the quantized value gk(a:fk) ) described above n times
to the fusion center, where the test statistic T}, x is formed and a likelihood ratio test (described
in Section III.A) is performed on the basis of the Ty 4, for k = 1,2,.-. K.

Note that in the above quantization scheme, the number of levels M and the breakpoints
xﬁf) (¢ = 0,1,---, M) are not necessarily the same for distinct sensors. For the purpose of
simplicity, we may set them to be the same for all sensors. Although the resulting quantization
scheme will not be optimal, its performance, as derived from simulations, is acceptable for a
reasonable number of quantization levels. Moreover, the analysis and the design of this scheme
is straightforward.

IIIC. Optimally Quantized Transmission

In the scheme of Subsection III.B, the quantizer g; of sensor k is obtained directly from the
discrete-form of the optimal nonlinearity g of the first scheme, and thus is not an optimal quan-
tizer. Since quantizers also function as nonlinearities (thus satisfing the central limit theorem
and regularity conditions of Section II), we can reformulate the deflection of each sensor for the
second scheme by initially working on the nonlinearity of a quantizer-form and by deriving the
associated deflection as the design criterion for the optimal quantizer (breakpoints and levels)
of each sensor. Actually this type of scheme has been addressed in [8] and [9] for single-sensor
detection. By using the technique similar to the one of [9], we can obtain the optimal quantizer
for each sensor through numerical optimization methods.

Let Qk(Xi(k)) be the quantizer with M levels for sensor k (k = 1,2,.-., K) in our scheme.

Denote by tx = [txo0 k1 - tkm] its breakpoints and by ux = [ur1 ukz2 ---uka] its levels.
The test statistic formed from the transmission of sensor k now is T, = 31, Qk(X,-(k)). As

mentioned in Section II, we assume that, under the large sample size n, each test statistic is

10



Gaussian distributed and the Neyman-Pearson criterion in the fusion center is equivalent to
maximizing the deflection. In addition, since Qi of the sensor k is one special form of the
nonlinearity described in Section II, the assumptions and regularity conditions are still useful

here.

For this case, the deflection in the fusion center has the form

K K v v 2

Nflgg — Nfly,

Drs=> Dig=), (vt =7 ) (30)
k=1 k=1 %0

where njix g and nd o are the mean and the variance of ’f’n,k for all # > 0, and thus functionals of
Q. Again we omit the argument Q) in the formulations involving the means and the variances.

From (4) we have

M
Zuk,iuk,IPO{Xl(k) € (tri-1,tkir X J(i)l € (tki~1,tk,]}

Mk

M Bt
Fko = Z(Ulc,l)2/ fr(z)dz + 22
i=1 t

k-1 j=1li=11=1
M trt 2
—2m+1)(3 ey /t fu(z)de) (31)
1=1 k-1

The deflection criterion is the optimization problem

Q2% g Pro(Qr). (32)

Since the observations are independent across sensors, the above optimization problem is decou-

pled for different sensors and turns out to maximize

(fiko — fixo)?
% .0(Qx) (33)

with respect to Q, as 8 — 0. Equivalently, we maximize the efficacy

. Dy o(Qr) (Ofir,p/00)%|6=0
lim ———~- = F = : 34
6—0 g2 k(Qk) 5]3,0(Qk) ( )
with respect to @ individually, for k = 1,2,.-., K. In (34),
Olire,  _ / d
50 lo<o = | Qu(2)filz)dz =D wra[feltri—1) — fu(te,)] (35)
{=1

11



The optimization problem of (34) has been addressed in [9] for the single-sensor detection

with the m-dependent noise of symmetric probability density; a method similar to that in [9] can

be used to search for the optimal levels uy; (I = 1,2,---, M) and breakpoints tx; ({ = 0,1, - -,

M)

for noise with a asymmetric density. We do not duplicate the manipulations of [9] and give only

the results.

Fork=1,2,--

the vector

the matrixes

with

and

with

wKand!l=1,2,-.., M, define

V= [filted) — fe(tiima)]
Afe = [AFPARE .. AfE)

Fi, = diag{ / fe@yte - [ fu(e)da)

M-1

B, = [P(k)]

P = 23" Po{x e (P N, X € i, tigl)
i=1

= [R)]

RY) = / fu(z)dz - /tt" ful2)dz.

l

Then the efficacy of sensor k has the form

(ueTA fi)?

E L) = ~ = - .
HQ) urT(Fy + Py — Ry)ug

12

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)



In this scheme, we assume that tx; (I = 0,1,--., M) of sensor k are chosen, such that the matrix

F+P-(2m+ I)R is positive definite. Then the optimal quantization levels of sensor k are
w* = ~(F, 4+ Py — Bp)'Af (44)

for fixed breakpoints. Substituting the optimal levels given by (44) into the form of Ej, we have

the efficacy of the sensor & as a function of the breakpoints only, i.e.,
Er= AfRT(Fe+ P — By)7'Af (45)

where we omit the arguments ¢; (I = 0,1,.-.,M). Then numerical optimization techniques,
such as the gradient method, can be used to solve the optimization problem of (45) and obtain
first the optimal breakpoints and then the optimal levels.
II1.D. Optimally Quantized Transmission with Nonlinear Preprocessors

The most difficult part of the scheme in Subsection IIIC is the multi-dimensional optimization
problem of (45), which is time-consuming in the case of a large m when we are searching for
the stationary points, particularly when the number of quantization levels M is large. In this
section, we consider a modified scheme, in which a nonlinear preprocessor is used for each sensor
to form the test statistic and handle the dependence before quantizing. This scheme leads the
search for optimal quantizers to a special case of the optimization problem presented in the
previous section for m = 1, then saving much time during the searching procedure. In Figure 2,
we give the configuration of this scheme.

Each preprocessor consists of a continuous nonlinear function gx(:) (k = 1,2,---,K) of its
observation X; (¢ = 1,2,-.-,n). The function of the preprocessor k is the same as in the first
scheme, namely to form a test statistic (T, x) by passing its observation through the nonlinearity

gx and summing up to the large sample size n, as that T), ; are Gaussian distributed individually.

13



Following each preprocessor, a quantizer g is designed for the quantized transmission from the
sensor k to the fusion center. Then the Neyman-Pearson test is used in the fusion center based
on these quantized data. In this scheme, we also assume a large number of quantization levels
M, so that the quantized data gx(T, k) of a Gaussian random variable T}, ; are still Gaussian
distributed. The optimal nonlinearities gx (kK = 1,2,---,K) and the companioned optimal
quantizers g; are obtained by using the deflection criterion from the Neyman-Pearson test of
Gaussian data.

Let My g, sz'O be means and variances of the quantizers qx(T 1), for k = 1,2,..-, K, under
Hy, for 6 > 0, or Hg, for 8 = 0; both of them are functionals of (g, gx), which are omitted in

the following formulations. Thus,

My = / ax(2) fa( \/_';“ Ry (46)

and

Vo= [ @) aC e - ([ au(e)fo( 1A yday (47)

where fg(-) is the standard Gaussian density, and nux ¢ and naz’o are the mean and the variance
of Ty 1, for all > 0, and thus functionals of gj.

As in the previous section, the deflection criterion is equivalent to maximizing the efficacy
of each sensor k, as # — 0, because of independent observations across sensors. The efficacy
of each sensor is now a functional of g and ¢, and the design criterion is to maximize it with

respect to (gk,qx), for k =1,2,..., K and 8 — 0, i.e.,

T [0M} 0/ 06)%|0= =0
MaTgy,qp Vk R

(48)

In the following, we show that the optimization problem (48) for each sensor k can be separated

into two decoupled optimization problems.

14



Changing the variable and using a condition similar to (6) we have

Mo = [ (@) ol dr = [ au(Vonos + nina) fo(z)da (49)

and

M. p

0
0 /%Qk(\/ﬁak,ox+ nuke) fo(z)de

;/k.—o dm/ [a =—qk(Vnok0x + nprp)l fo(z)de
Vil g

Ok,0

’

- / gk (Vo + npre) fo(z)dz (50)

The optimization problem of (48) is characterized by

e L088) 12 (] ge(V/Rokow + ngix0) f5(2)dz)?

gk:9k Ok O(gk)) [ @i (v/nog o + npu) fo(z)dz — ([ ae(/mokoe + npiko)fo(z)dz)?’ (51)

Let gi(z) = qr(ok 02 + pro), for k= 1,2, ., K. Then the optimization problem of (51) can be

conducted separately as follows. We first maximize the ob jective function

o (f (@) f(e)da)?
50 = T fa(a)dz - (] Ge@)fa(@)da)? (52)

with respect to the quantizer gx (i.e. the breakpoints and the quantization levels) for fixed oy o
and g0, which is a special case of the previous section for m = 1. Because of the form of Sars
the optimal breakpoints and the quantization levels depend only on fg(-) and are independent
of (0%, ik,0), and thus gx. Then the optimal gi can be obtained by maximizing the objective
function §,, with respect to gi, which has been shown in Subsection III.A.

After the optimal gi and gi are determined for all sensors k=1,2,...,K, we can evaluate
o o(gx), as well as pro(gr); the optimal quantizers gj are implemented as gx(z) = Gi[(z -

pro)/oko), for all x.

15



IV. THE CASE WITH CORRELATION ACROSS TIME AND SENSORS

We now consider the dependence across time and sensors for the case of two-sensor detection.
Although we do not address the general case, the results of this section can be extended to
multiple-sensor detection with more than two sensors.
IV.A. Unquantized Transmission

The sensor-fusion scheme employed here is the same as the one in the Subsection IIL.A, i.e.,
each sensor passes a test static T x = ) 7y gk(X,-(k)) (k = 1,2) to the fusion center, where the
Neyman-Pearson test is performed. "

Let pg be the correlation coefficient of T5,; and T}, 2, under Hp. As discussed in Section II,
since the signal is weak, it is reasonable to assume that, under either hypothesis H; (¢ = 0,1),

the correlation coefficient of T), 1 and T, 2, for all § > 0 and 8 — 0, has the same form

Eo[(Tn,1 — npa,0)(Th,2 — npi20))
\/Var(Tnyl)Var(Tnyg)

pe(g1,92) = pol(g1,92) = (53)

which has been studied in [15]. In the following, we omit the arguments of p for greater conve-

nience. The likelihood ratio function of T, ; (k = 1,2) in the fusion center has the form

' T,
ln L:ln fI\,l(Tn,b 'n.,‘Z)
fK,0(Tn,Th2)
1 _ _ - _
2{ 11,6 - p1,0  po(tze = 120) Ty + 2,6 n H20  po(p1,6 — 1,0) Tos
1-pg 910 01,002,0 0320 01,002,0
Bio— Mo Moo= Ko | polpashae — f1,002,0)
- 2 - 2 + }- (54)
2070 2039 01,002,0

It is straightforward to show that the expectations and the variance of In L under two hypotheses

are

Eq[ln L) = —Eg[ln L]

_ 1 n(p1,6 — p1,0)2 | nlpzg — pap)®  2npo(pa,e — p1,0) (K2, = B2,0)
- 2 2 + 2 -
2(1 - pg) o10 %30 01,002,0

(55)
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and
1 n - 2 - 2 2n - -
(k10— p10)* | nlpze n p20)° _ 2npolp1e — #1,0)(H2,6 = H20) (56)

Var[ln L] =
(in Z (1-p3) 0'12,0 %20 01,002,0

Following steps similar to those in Subsection III.A for the Neyman-Person test we obtain

the deflection criterion

(Ey[In L] = Eoln L])?
Var[ln L]

n (e — o)’ Y #20)°  2po(p1,6 — p1,0)(K2,6 = B2,0) (57)
(1-p}) %0 930 71,002,0

D(L)

Minimizing the above deflection with respect to (g1(-), g2(-)) we obtain the optimal nonlinearities
of the sensors.

In this section, the situation in which the univariate and the second-order joint densities
of the two observation sequences {Xé(k)}?=l (k = 1,2) are identical, i.e., fi(z) = fo(z) = f(z)
and fl(j)(a:,y) = féj)(a:,y) = fU)(z,y), for j = 1,2,---,m, is of particular interest. For these
symmetric densities, the optimal nonlinearities will have the same form, i.e., (g1(+), g2(-)) satisfy

91(:) = 92(-) = ¢(-). Under the these symmetric (identical) conditions, the means and the

variances of the nonlinearities satisfy

Ho = H16 = H2,0 (58)

as well as

0g = 01,0 = 020 (59)

and, as § — 0, (57) takes the form

20us — po)® _  26%(p)”
(14 po)ad (14 po)ad

D(L)=n (60)

In this situation of symmetric conditions, we can prove the necessary and sufficient conditions

for the optimal nonlinearity (see [15]). For the general situation of asymmetry, however, a
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numerical test has to be conducted by using the continuous-time optimization techniques. The
necessary and sufficient conditions for the minimization of (60) with respect to g(-) has been
accomplished for m-dependent noise, ¢-mixing or p-mixing noise in [15] and will not be repeated

it here. The final form of linear integral equation, which determines the optimal g(-), is

- 1@I1@ - [ Klan)a@)dy = o(2) (61)

where K (z,y) is the kernel of integration and has the form

K(z,y)= (ngz)/Nl(x)(ylm) + fox)/Ny)(ylm))/? - 2f(y)

+ ;[ngl)l,Np)(yle ngx)/Nﬁ)l(ylfﬂ) + fN,(i)l/N§’)(y|$)+ fNﬁ)l/N{z)(ylw) - 4f(y)]

= ng)/Np)(ylm) ~2f(y)+2 Z[fzv(.;) o lz) + fN(-i) o 8lz) ~ 27(y)] (62)
i e 1y

with the notation fN;i)l /Nl(,)(.|.) representing the conditional density of X}i)l given X 1(1).
IV.B. Directly Quantized Transmission

As discussed in Subsection IIL.B, for practical purposes, we modify the scheme previous
subsection and adopt the same structure of quantized transmission as the one in Subsection
II1.B for the present case with symmetric conditions.

By directly changing the integral equation (61) to its discrete-form we obtain

M
- f/(xt.‘)/f(mt.') - 2 I(C(ztnxtj)g(xtj)Amtj = g(z4;) (63)

i=0

where 24, (¢ =0,1,--., MO0 are the breakpoints. Define the vectors

9 =19(z4) 9(z0,)s - > 9(21a)] (64)
=) f'(@0)s s ' (@ey)] (65)

and the matrix
G = [Gyj] (66)
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where

Gi; = f(xti)[I(C(mti’xtj)Amtj + 6(ti - tj)] (67)

and let 4, (¢ =0,1,---, M) be chosen, as that the matrix G is nonsingular. Then we can solve
(63) for g as

g =aGf7. (68)

From the discrete-form g(z¢,) (¢ = 0,1, - -, M) the quantizer for both sensors takes the following

form for any observation

g(a$) if ¢ < 2P
§(=) = | lo(ze) + 9(ze,)/2 o€ (2,2 (69)
| g(ngl)_l) ifz> wygq

for i = 1,2,-.-, M — 2. This will be transmitted to the fusion center n times to form the test
statistic Tk = 3.1y g(mgk)) (k = 1,2), which will be combined as in (54) for computing the
likelihood ratio function.
IV.C. Optimally Quantized Transmission

We consider the scheme of in Subsection III.C for the present case. Under the symmetric
densities, we have fi; g = Jia 9 = fig, for all § > 0; &10 = 20 = Jo; and the optimal quantizers
for the two sensors have the same form because of the symmetricity, i.e., @1 = Q2 = Q. Denote
by t = [to,t1,---,trr] the breakpoints and by u = [y, ug,- -, ups] the levels of Q. From the

symmetric second-joint densities we have

Po{X (" € (ti1, 1], X3 € (o1, 1))

PO{X1(2) € (ti—l’ti],XJ('j.)] (S (tl_l,t]]}

= Po{X1€ (ti-1,t), Xj41 € (ti-1, 8]}
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Let 3(Q) be the correlation coefficient of T3 and Ty, 2 and f the joint density of N 1(1) and N ﬁ_)l;

then

p(Q)éé(Q)=E[Q(XP’)Q(X{”)Mi EQXMQx)] - (2m + 1)(EQX{)*

j=1
M M t ot . m My @ . 41 v@
=D i Fle,y)dedy+23" 3" Y wiw - Po{ Xy € (tim1, ti, X33 € (b, 1}
i=1Il=1 ti—y vii—g j=11i=1[=1
M 4
_em+ )3 w /t f(z)dal?, (70)
=1 -1

and the efficacy for the design criterion, which drives from the deflection in the fusion center,

has the form

5@ = e ey ™
Define the matrix
P. =[Py (72)
with
Py= /t : /t .: Fz,y)dedy + 2§PO{X§” € (tin, t, X € (o, i} (73)

Let ), = F, = F, Pp=P =P (where F; and P, are defined in Subsection III.C) and
Bi=Ry = R. Moreover, let us assume that the ; (! = 0,1,---, M ) are chosen, such that the
matrix '+ P+ P — (Am + 2)R is positive definite. Following steps similar to the ones in [9] we

compute the optimal quantization levels used by sensor k for fixed breakpoints
w=—(F+P+P —(dm+2)R)'Af (74)

where Af = f(t;‘) - f(tiz1),! = 1,2,---, M. The efficacy employing the optimal levels at the
fusion center is a function of the breakpoints and has the form
E=AfT(F+P+P.—(4m+2)R)'AS (75)
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where we omit the arguments t; (I = 0,1,---,M). Again, the objective function (75) can be
optimized with respect to the breakpoints by using the numerical optimization techniques.
IV.D. Optimally Quantized Transmission with Nonlinear Preprocessors

Here we consider the counterpart of Subsection IIL.D for the present case. Under the sym-
metric densities of Subsection IV.A, the optimal nonlinearities (g1(-),g2(-)) satisfy a() =
g2(1) = g(-); thus p1g = p2e = Heé, for all 8 > 0, and 010 = 020 = 0o. The quantizers
(a1(-), a2(")) satisfy q1(-) = a2(-) = q(-); thus M1,6(9,4) = Ma(9,9) = Mo(g, ), for 6 > 0, and
Vio(g,q) = Vaolg,9) = Vo(g,q). The design criterion is from the maximization of the efficacy

with respect to (g, ¢), i.e.,

max(-lf—é’-)2 . (f g(v/Aooz + npto) fi(x)dz)? (76)
99 00’ (1+ pa)lJ ©2(v/noox + npo) fo(z)dz — ([ a(v/nooz + npto) fo(z)dz)?]

where p, is the correlation coefficient of q(Tn,1) and ¢(Ty 2).

By using techniques similar to the ones of Subsection III.D, the above complex optimization
problem can be separated in two decoupled optimization problems. The one with respect to g
has the solving procedure discussed in Subsection IV.A, the one with respect to ¢ was solved in

Subsection IV.C for the sample size n = 1.

21



V. NUMERICAL RESULTS

To illustrate the analysis and the performance of the quantization-fusion schemes devised
in the previous sections, we consider the weak signal in Cauchy noise which is symmetric with
respect to its medium for the specific case of two-sensor data fusion. We consider p-mixing noise
truncated to m which is large enough for the simulation and the sample size is 10°. Without
loss of generality, the the weak signal 6 is assumed to be 0.06 for convenience. The univariate

density of the Cauchy noise in our numerical examples is given by

1
(14 (2 — )7’

fr(z®) = k=1,2

where —00 < 7k < oo is the median (assumed known).
Although the second-order joint density of a Cauchy noise is difficult to characterize directly,
it can be calculated from the second-order joint density of a Gaussian process by a nonlinear

transformation (see [6]). Let

exp [~(z) — 1)?/2]

*) —
fG'(m ) \/2—7?
and
-1 k), (k k
fo(z®), 48y = exp{ [(eW =702+ (y® =742 = 20 (2 — )y B = 7)1}
ar(1-p®))  2(1- o) ¢

be the univariate and the second-order joint densities of the underlying Gaussian process, where
pgc) is the correlation coefficient. Then the nonlinear transformation mentioned above has the
form T(z) = tan[r - er f(2/v/2)/2] (see [9]). In addition, we assume that the underlining Gaus-
sian process for the corresponding Cauchy noise of each sensor is characterized the following

autoregressive model with the correlation coefficients -1 < py < 1fork =1,2

N =y

=
=
Ko
]

pNEL 41 g2V 05> 1
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where both V,-(k), fori=1,2,---,n; k= 1,2, are sequences of 7.i.d. Gaussian random variables
and have standard Gaussian densities. In the following examples, for the cases of dependence
across time only, Vz-(l), Vi(z) fori = 1,2,..-,n are generated independently of each other; for the

cases of dependence across time and sensors, they are generated dependently as follows

Vi = p VW /1 - 2w

where V,-(l) and W; are two independent i.i.d. Gaussian processes and —1 < p. < 1 is another
correlation parameter.

In the following Tables for the quantization levels and breakpoints, only the right-half '(pos-
itive if the medium of the Cauchy noise is zero) values of the breakpoints and the revalent
level values are given since the resulted quantizers (levels and breakpoints) are symmetric with
respect to the medium of the noise.

V.A. The Case of Correlation Across Time Only

In the examples for the case of dependence across time only, we set v; = 0.00, v, = 0.50,
p1 = 0.95 and py = 0.90; the truncated m is 150 for sensor 1, and 100 for sensor 2.

Example 1: This example is for the scheme of unquantized transmission in Section III. By
employing the above values of parameters, the optimal nonlinearities gy opi(z) and go opi(z) are
plotted in Figures 1.1 and 1.2, in which plots of the corresponding locally optimal nonlinearities,
griid (K = 1,2), obtained by ignoring the dependence are also included. In Figure 1.3, the
ROCs for the schemes of employing these nonlinearities are given, and the ROC of single-sensor
detection by using g1,0p: is also included there (represented by dotted lines).

Example 2: This example is for the scheme of directly quantized transmission in Section
III. Since the values of the Cauchy random variables for the noise process are transformed

from the underlying Gaussian random variables, the range of the breakpoints (the interval of
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integration) is set for these Gaussian random variables. Thus, we set (X,(:i)n, X,(nlgx = (-5.0,5.0)
and (X,(:,-)n,X,(,?gx) = (-4.5,5.5), which are enough for the Gaussian random variables with
the mean zero and the variance one, as well as with the mean 0.50 and the same variance
one, respectively. For the purpose of good performance and the consideration of practice, the
numbers of quantization levels are reasonably chosen to be M = 32 for both sensors. The
resulted quantization levels and breakpoints for the Cauchy noise are given in Table 1.
Example 3: In this example, the values of the parameters for each sensor are the same as in
the previous one, but are used for the scheme of optimally quantized transmission in Section
ITII. The optimal quantization levels and breakpoints are given in Table 2.
Example 4: This example is for the scheme of optimally quantized transmission with pre-
processors in Section III. The optimal nonlinearities are the same as in Example 1; the optimal
quantizers are characterized in Table 3, where the breakpoints use the scale of standard Gaussian
random variables.
V.B. The Case of Dependence Across Time and Sensors

In the examples for the case of dependence across time and sensors, we set y; = y2 = v = 0.0,
p1 = p2 = p = 0.95 and m = 200 for both sensors.
Example 5: This example is the for the same scheme as in Example 1 but of this case. The
optimal nonlinearity g.p; used by both sensors are drawn in Figure 5.1, in which the optimal
nonlinearities, ¢;44 and g;;4, obtained by ignoring the dependence across sensors and across time
and sensors, respectively, are also included. In Figure 5.2, we draw the ROCs of employing these
nonlinearities; the ROC of single-sensor detection is also included there (represented by dotted
lines).

Example 6: This is the corresponding example for the same scheme as in Example 2 but of
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current case. The same parameters for the underlying Gaussian process (M = 32, v = 0.0,
Xmin = —5.0 and X5 = 5.0) as of sensor 1 in Example 2 are set. The optimal quantizer are
given in Table 4.

Example 7: By using the same set of parameters as in Example 6, the optimal quantizer for
the same scheme as in Example 3, but of this case, are given in Table 5.

Example 8: The final example is for the same scheme as in Example 4 for this case. The
optimal nonlinearity has been given in Example 5, and the optimal quantizer is given in Table

6, where the breakpoints use the scale of standard Gaussian random variables.
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V. CONCLUSIONS

The problem of memoryless data fusion from multiple sensors for detection of a weak sig-
nal in dependent noise, which has a stationary univariate and second-order densities for each
sensor, was formulated and analyzed. The design criterion for the structure of each sensor is
the deflection which is from the Neyman Pearson test of Gaussian data in the fusion center.
By considering ideal channel capacities, we first derived the optimal memoryless nonlinearities
of continuous-time for the structures of the sensors. Then to fully utilize the channel capaci-
ties under bandwidth consideration three distinct quantization schemes were proposed for the
information transmission between the sensors and the fusion center.

In the first quantization scheme, the quantizers used in the sensors were obtained directly
from the discrete-form of optimal nonlinearities, and were not optimal quantizers. In the second
scheme, by replacing the role of the nonlinearity with a quantizer-type nonlinear function for each
sensor, we derived the formula for the optimal quantizer (optimal breakpoints and quantization
levels) of each sensor. Finally, the scheme with a nonlinear preprocessor before quantizing for
each sensor was devised; in particular, we proved that the complex optimization problem with
respect to the nonlinear preprocessor and the quantizer for each sensor could be decoupled in
two optimization problems: the one is for the optimal nonlinear preprocessor, and the other is
for the optimal quantizer.

In our work we assumed that first- and second-order densities of the noise processes are known
a priori. However, in most situations the statistics of the observations are not completely known

beforehand and thus a robust scheme is to be developed, which is under current investigations.
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sensor 1 sensor 2
breakpoints levels | breckpoints levels
0.0 0.0574 0.5000 0.1108
0.4057 0.1178 0.9057 0.2252
0.9043 0.0757 1.4043 0.1515
1.6405 | -0.0051 2.1405 0.0052
2.9014 | -0.0459 3.4014 | -0.0862
5.3253 | -0.0454 5.8253 | -0.0989
10.4401 | -0.0331 10.9401 | -0.0725
22.1622 -0.020 22.6621 | -0.0423
51.2539 | -0.0102 51.7539 | -0.0210
129.5022 | -0.0049 130.0022 | -0.0092
358.0428 | -0.0020 358.5428 | -0.0035
i084.3265 -0.0007 1084.8265 0.0019
3600.0892 | -0.0002 3600.5892 | -0.0003
13112.7120 | -0.00005 | 13113.2120 } -0.00008
52426.3876 | 0.000004 | 52426.8876 | -0.00002
230200.9010 | 0.00003 | 230201.4010 | 0.000004

Table 1: the quantizers for Example 2




sensor 1 sensor 2
breakpoints levels | breckpoints levels
0.0 | -0.3197 0.5000 | -0.4326
0.0626 | -0.2297 0.0580 | -0.3266
0.1277 | -0.1140 0.1352 | -0.2000
0.2523 | -0.0170 0.2287 | -0.0711
0.3219 | 0.0701 0.3326 | 0.4383
0.5302 | 0.1278 0.4555 | 0.1511
0.6863 | 0.1352 0.6722 | 0.2070
0.8584 | 0.1094 0.8627 | 0.1974
1.2264 | 0.0692 1.2165 | 0.1462
1.4243 | 0.0272 1.4664 | 0.0781
2.0110 | -0.0158 1.9771 | -0.0042
2.6446 | -0.0406 2.6552 | -0.0777
3.8566 | -0.0503 4.6643 | -0.1082
7.0958 | -0.0433 7.1017 | -0.0955
13.9683 | -0.0174 14.0342 | -0.0398
235.7976 | 0.0070 235.3890 | 1.6089

Table 2: the optimal quantizers for Example 3



for both sensors

breakpoints | levels

0.0 | 0.0659

0.1320 | 0.1981

0.2648 | 0.3314

0.3991 | 0.4668

0.5395 | 0.6050

0.6761 | 0.7473

0.8210 | 0.8947

0.9718 | 1.0490

1.1300 { 1.2120

1.2990 | 1.3870

1.4820 | 1.577
1.682 | 1.788
1.908 | 2.029
21741 2.319
2.050 | 2.692
2977 | 3.263

Table 3: the optimal quantizers for Example 4



for both sensors

breakpoints | levels

0.0 ] 0.1152

0.4057 | 0.2735

0.9043 | 0.2720

1.6405 { 0.1759

2.9014 | 0.0937

5.3253 | 0.0446

10.4401 | 0.0188

22.1622 | 0.0079

51.2539 | 0.0034

129.5022 | 0.0020

358.0428 | 0.0017

1084.3265 | 0.0018

3600.0892 | 0.0019

13112.7120 | 0.0021

52426.3876 | 0.0023

230220.9010 | 0.0029

Table 4: the quantizers for Example 6



for both sensors

breakpoints levels

0.0 | -1.7900
0.0672 | -1.4464
0.1296 | -1.1168
0.2036 | -0.7633
0.2946 | -0.3963
0.4075 | -0.0801
0.5145 | 0.2034
0.6847 | 0.4336
0.8634 | 0.6015
1.4832 | 0.6002
1.8523 | 0.5001
2.7674 | 0.2499
8.5091 | 0.0323

13.9745 | -0.0378
38,0959 { -0.0791

1998,2669 | -0.0609

Table 5: the optimal quantizers for Example 7



for both sensors

breakpoints levels

0.0 { -0.0686

0.1188 | 0.2874

0.2492 | 0.6231

0.4093 | 0.9254

0.8322 | 0.8917

1.0154 | 0.7492

1.1926 | 0.5852

1.3842 | 0.4230

1.5884 | 0.2862

1.7944 | 0.1850

1.9979 | 0.1153

2.1993 | 0.0695

2.3998 | 0.0404

2.6000 | 0.0227

2.8000 | 0.0123

3.0000 | 0.0042

Table 6: the optimal quantizers for Example 8
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